chalkydri_apriltags/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#![feature(
    portable_simd,
    alloc_layout_extra,
    slice_as_chunks,
    sync_unsafe_cell,
    array_chunks
)]
#![warn(clippy::infinite_loop)]

#[cfg(feature = "multi-thread")]
extern crate rayon;

//mod decode;
// mod pose_estimation;
pub mod utils;

use cam_geom::IntrinsicParametersPerspective;
// use pose_estimation::pose_estimation;
use ril::{Line, Rgb};
// TODO: ideally we'd use alloc here and only pull in libstd for sync::atomic when the multi-thread feature is enabled
use std::{
    alloc::{alloc_zeroed, dealloc, Layout},
    sync::atomic::{AtomicUsize, Ordering},
};

#[cfg(feature = "multi-thread")]
use rayon::iter::{ParallelBridge, ParallelIterator};

use crate::utils::*;

/// Raw buffers used by a [`detector`](Detector)
///
/// We need a separate struct for this so the compiler will treat them as thread-safe.
/// Interacting with raw buffers is typically lower overhead, but unsafe.
struct DetectorBufs {
    /// The thresholded image buffer
    buf: *mut Color,
    /// Detected corners
    points: *mut (usize, usize),
}
unsafe impl Send for DetectorBufs {}
unsafe impl Sync for DetectorBufs {}

/// An AprilTag detector
///
/// This is the main entrypoint.
pub struct Detector {
    /// Raw buffers used by the detector
    bufs: DetectorBufs,
    valid_tags: &'static [usize],
    points_len: AtomicUsize,
    /// Checked edges (x1, y1, x2, y2)
    lines: Vec<(usize, usize, usize, usize)>,
    /// Width of input frames
    width: usize,
    /// Height of input frames
    height: usize,
}
impl Detector {
    /// Initialize a new detector for the specified dimensions
    ///
    /// `valid_tags` is required for optimization and error resistance.
    pub fn new(
        width: usize,
        height: usize,
        valid_tags: &'static [usize],
        //intrinsics: IntrinsicParametersPerspective<f32>,
    ) -> Self {
        unsafe {
            // Allocate raw buffers
            let buf: *mut Color =
                alloc_zeroed(Layout::array::<Color>(width * height).unwrap()).cast();
            let points: *mut (usize, usize) =
                alloc_zeroed(Layout::array::<(usize, usize)>(width * height).unwrap()).cast();
            let points_len = AtomicUsize::new(0);

            Self {
                bufs: DetectorBufs { buf, points },
                valid_tags,
                points_len,
                lines: Vec::new(),
                width,
                height,
            }
        }
    }

    /// Calculate otsu value
    ///
    /// [Otsu's method](https://en.wikipedia.org/wiki/Otsu%27s_method) is an adaptive thresholding
    /// algorithm. In English: it turns a grayscale image into binary (foreground/background,
    /// black/white).
    ///
    /// We should investigate combining the variations for unbalanced images and triclass
    /// thresholding.
    pub fn calc_otsu(&mut self, input: &[u8]) {
        let mut i = 0usize;
        // Histogram
        let mut hist = [0usize; 256];

        // Calculate histogram
        for i in 0..self.width * self.height {
            unsafe {
                // Red, green, and blue are each represent with 1 byte
                let gray = grayscale(input.get_unchecked((i * 3)..(i * 3) + 3));

                let pix = hist.get_unchecked_mut(*input.get_unchecked(i) as usize);
                *pix = (*pix).unchecked_add(1);
            }
        }

        let mut sum = 0u32;
        let mut sum_b = 0u32;
        let mut var_max = 0f64;
        let mut thresh = 0u8;

        //for t in 0..256 {
        //    sum += t as u32 * hist[t];

        //    let w_b =

        //println!("{:?} {i}", st.elapsed());
    }

    /// Process an RGB frame
    ///
    /// FAST needs a 3x3 circle around each pixel, so we only process pixels within a 3x3 pixel
    /// padding.
    pub fn process_frame(&mut self, input: &[u8]) {
        // Check that the input is RGB
        assert_eq!(input.len(), self.width * self.height * 3);

        unsafe {
            self.thresh(input);
        }
        // Reset points_len to 0
        self.points_len.store(0, Ordering::SeqCst);
        // Clear the lines Vec
        self.lines.clear();

        self.detect_corners();

        self.check_edges();

        //pose_estimation(intrinsics);
    }

    /// Run corner detection
    #[inline(always)]
    pub fn detect_corners(&mut self) {
        #[cfg(not(feature = "multi-thread"))]
        for x in 3..=self.width - 3 {
            for y in 3..=self.height - 3 {
                unsafe {
                    self.process_pixel(x, y);
                }
            }
        }

        #[cfg(feature = "multi-thread")]
        (3..=self.width - 3).par_bridge().for_each(|x| {
            for y in 3..=self.height - 3 {
                unsafe {
                    self.process_pixel(x, y);
                }
            }
        });
    }

    /// Threshold an input RGB buffer
    ///
    /// TODO: This needs to use [Self::calc_otsu].
    ///
    /// # Safety
    /// `input` is treated as an RGB buffer, even if it isn't.
    /// The caller should check that `input` is an RGB buffer.
    #[inline(always)]
    pub unsafe fn thresh(&self, input: &[u8]) {
        // This is mainly memory-bound, so multi-threading probably isn't worth it.
        for i in 0..self.width * self.height {
            // Red, green, and blue are each represent with 1 byte
            let gray = grayscale(input.get_unchecked((i * 3)..(i * 3) + 3));

            // 60 is a "kinda works" value because I haven't implemented the algorithm
            if gray < 60 {
                *self.bufs.buf.add(i) = Color::Black;
            } else if gray > 160 {
                *self.bufs.buf.add(i) = Color::White;
            } else {
                *self.bufs.buf.add(i) = Color::Other;
            }
        }
    }

    /// Process a pixel
    ///
    /// This should have as little overhead as possible, as it must be run hundreds of thousands of
    /// times for each frame.
    ///
    /// # Safety
    /// (`x`, `y`) is assumed to be a valid pixel coord.
    /// The caller must make sure of this.
    #[inline(always)]
    unsafe fn process_pixel(&self, x: usize, y: usize) {
        // Pull out frame width and frame buffer for cleaner looking code
        // TODO: is this optimized down into a noop?
        let width = self.width;
        let buf = self.bufs.buf;

        // Get binary value of pixel at (x,y)
        let p = *buf.add(px(x, y, width));

        if p.is_black() {
            // Get pixels that are diagonal neighbors of p
            let (up_left, up_right, down_left, down_right) = (
                *buf.add(px(x - 1, y - 1, width)),
                *buf.add(px(x + 1, y - 1, width)),
                *buf.add(px(x - 1, y + 1, width)),
                *buf.add(px(x + 1, y + 1, width)),
            );

            // Only one can be black
            // The carrot is Rust's exclusive or (XOR) operation
            let clean = up_left.is_black()
                ^ up_right.is_black()
                ^ down_left.is_black()
                ^ down_right.is_black();

            if clean {
                // Furthest top right
                let p3 = *buf.add(px(x + 3, y - 3, width));
                // Furthest bottom right
                let p7 = *buf.add(px(x + 3, y + 3, width));
                // Furthest bottom left
                let p11 = *buf.add(px(x - 3, y + 3, width));
                // Furthest top left
                let p15 = *buf.add(px(x - 3, y - 3, width));

                if (p3.is_good() && p7.is_good() && p11.is_good() && p15.is_good())
                    && (p3.is_black() ^ p7.is_black() ^ p11.is_black() ^ p15.is_black())
                {
                    // Furthest top center
                    let p1 = *buf.add(px(x, y - 3, width));
                    // Furthest middle right
                    let p5 = *buf.add(px(x + 3, y, width));
                    // Furthest bottom center
                    let p9 = *buf.add(px(x, y + 3, width));
                    // Furthest middle left
                    let p13 = *buf.add(px(x - 3, y, width));

                    // Add p to the corner buffer
                    *self
                        .bufs
                        .points
                        .add(self.points_len.fetch_add(1, Ordering::SeqCst)) = (x, y);
                }
            }
        }
    }

    /// Check a single edge (imaginary line between two corners)
    ///
    /// See [Self::check_edges].
    ///
    /// # Safety
    /// (`x1`, `y1`) and (`x2`, `y2`) are assumed to be a valid pixel coords.
    /// The caller must make sure of this.
    unsafe fn check_edge(&mut self, x1: usize, y1: usize, x2: usize, y2: usize) {
        // idk how to describe this one
        const CHECK_OFFSET: usize = 5;
        let width = self.width;
        let buf = self.bufs.buf;

        // calculate & store midpoint
        let midpoint_x = (x1 + x2) / 2;
        let midpoint_y = (y1 + y2) / 2;

        // Figure out if edge is closer to horizontal/vertical
        let (xdiff, ydiff) = (x1.max(x2) - x1.min(x2), y1.max(y2) - y1.min(y2));
        let is_vertical_line = x1 == x2 || xdiff < ydiff;
        let is_horizontal_line = y1 == y2 || ydiff < xdiff;

        // Calculate and store the coords for the midway points
        let (mw1x, mw1y) = ((midpoint_x + x1) / 2, (midpoint_y + y1) / 2);
        let (mw2x, mw2y) = ((midpoint_x + x2) / 2, (midpoint_y + y2) / 2);

        if is_vertical_line {
            // edge is closer to a vertical line instead of a diagonal
            let mw1right = *buf.add(px(mw1x + CHECK_OFFSET, mw1y, width));
            let mw2right = *buf.add(px(mw2x + CHECK_OFFSET, mw2y, width));

            let mw1left = *buf.add(px(mw1x - CHECK_OFFSET, mw1y, width));
            let mw2left = *buf.add(px(mw2x - CHECK_OFFSET, mw2y, width));

            // Check that all of the checking points are valid
            if mw1left.is_good() && mw2left.is_good() && mw1right.is_good() && mw2right.is_good() {
                // Check that only one side of the edge is black (the other should be white)
                if (mw1left.is_black() ^ mw2right.is_black())
                    && (mw2left.is_black() ^ mw1right.is_black())
                    && (mw1left == mw2left)
                {
                    // midway one has black pixels on both sides
                    self.lines.push((x1, y1, x2, y2));
                }
            }
        }

        if is_horizontal_line {
            // edge is closer to a horizontal line instead of a diagonal

            // XXX: Checking midway 1 then midway 2 *might* have marginally better performance,
            // but likely not worth it for the more complex code.

            // create the point to the right of the two midways
            let mw1top = *buf.add(px(mw1x, mw1y - CHECK_OFFSET, width));
            let mw2top = *buf.add(px(mw2x, mw2y - CHECK_OFFSET, width));

            // create the point ot the left of the two midways
            let mw1bottom = *buf.add(px(mw1x, mw1y + CHECK_OFFSET, width));
            let mw2bottom = *buf.add(px(mw2x, mw2y + CHECK_OFFSET, width));

            // check if the midways are black pixels,
            // and if the pixels to the right and left of these midways are black pixels as well.

            if mw1top.is_good() && mw2top.is_good() && mw1bottom.is_good() && mw2bottom.is_good() {
                if (mw1top.is_black() ^ mw2bottom.is_black())
                    && (mw2top.is_black() ^ mw1bottom.is_black())
                    && (mw1top == mw2top)
                {
                    // midway one has black pixels on both sides
                    self.lines.push((x1, y1, x2, y2));
                }
            }
        }
    }

    /// Perform edge checking on all detected corners
    #[inline(always)]
    pub fn check_edges(&mut self) {
        // Turn the raw buffer into a Rust slice
        let points = unsafe {
            core::slice::from_raw_parts(
                self.bufs.points as *const _,
                self.points_len.load(Ordering::SeqCst),
            )
        };

        // Iterate over every detected corner
        // TODO: this might benefit from multi-threading
        for &(x1, y1) in points.iter() {
            // Iterate over every detected corner in reverse, checking for edges
            for &(x2, y2) in points.iter().rev() {
                unsafe {
                    self.check_edge(x1, y1, x2, y2);
                }
            }
        }
    }

    pub fn draw(&self) {
        let mut img = ril::Image::new(self.width as u32, self.height as u32, Rgb::black());
        for (x1, y1, x2, y2) in self.lines.clone() {
            img.draw(
                &ril::draw::Ellipse::circle(x1 as u32, y1 as u32, 2)
                    .with_fill(Rgb::from_hex("ffa500").unwrap()),
            );
            img.draw(
                &ril::draw::Ellipse::circle(x2 as u32, y2 as u32, 2)
                    .with_fill(Rgb::from_hex("ff0000").unwrap()),
            );
            img.draw(&Line::new(
                (x1 as u32, y1 as u32),
                (x2 as u32, y2 as u32),
                Rgb::white(),
            ));
        }
        img.save(ril::ImageFormat::Png, "lines.png").unwrap();
    }
}
impl Clone for Detector {
    fn clone(&self) -> Self {
        Self::new(self.width, self.height, &[])
    }
}
impl Drop for Detector {
    fn drop(&mut self) {
        unsafe {
            dealloc(
                self.bufs.buf as *mut _,
                Layout::array::<bool>(self.width * self.height).unwrap(),
            );
            dealloc(
                self.bufs.points as *mut _,
                Layout::array::<(usize, usize)>(self.width * self.height).unwrap(),
            );
        }
    }
}